Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State
نویسندگان
چکیده
Seed dormancy is a genetically controlled block preventing the germination of imbibed seeds in favorable conditions. It requires a period of dry storage (after-ripening) or certain environmental conditions to be overcome. Dormancy is an important seed trait, which is under selective pressure, to control the seasonal timing of seed germination. Dormant and non-dormant (after-ripened) seeds are characterized by large sets of differentially expressed genes. However, little information is available concerning the temporal and spatial transcriptional changes during early stages of rehydration in dormant and non-dormant seeds. We employed genome-wide transcriptome analysis on seeds of the model plant Arabidopsis thaliana to investigate transcriptional changes in dry seeds upon rehydration. We analyzed gene expression of dormant and after-ripened seeds of the Cvi accession over four time points and two seed compartments (the embryo and surrounding single cell layer endosperm), during the first 24 h after sowing. This work provides a global view of gene expression changes in dormant and non-dormant seeds with temporal and spatial detail, and these may be visualized via a web accessible tool (http://www.wageningenseedlab.nl/resources). A large proportion of transcripts change similarly in both dormant and non-dormant seeds upon rehydration, however, the first differences in transcript abundances become visible shortly after the initiation of imbibition, indicating that changes induced by after-ripening are detected and responded to rapidly upon rehydration. We identified several gene expression profiles which contribute to differential gene expression between dormant and non-dormant samples. Genes with enhanced expression in the endosperm of dormant seeds were overrepresented for stress-related Gene Ontology categories, suggesting a protective role for the endosperm against biotic and abiotic stress to support persistence of the dormant seed in its environment.
منابع مشابه
Proteomic analysis of seed dormancy in Arabidopsis.
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins asso...
متن کاملCombined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy.
The importance of translational regulation during Arabidopsis seed germination has been shown previously. Here the role of transcriptional and translational regulation during seed imbibition of the very dormant DELAY OF GERMINATION 1 (DOG1) near-isogenic line was investigated. Polysome profiling was performed on dormant and after-ripened seeds imbibed for 6 and 24 h in water and in the transcri...
متن کاملTemporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions.
Seed imbibition is a prerequisite for subsequent dormancy and germination control. Here, we investigated imbibition responses of Arabidopsis seeds by transcriptomic and hormone profile analyses using dormant [Cape Verde Islands (Cvi)] and non-dormant [Columbia (Col)] accessions. Once imbibed, seeds of both accessions swelled most up to 3 h, reflecting water uptake. Microarray analysis showed th...
متن کاملRespiration and Protein Synthesis in Dormant and After-ripened Seeds of Avena fatua.
Dormant seeds of Avena fatua, which do not germinate when allowed to imbibe water, have a respiration rate only about 20% less than that of imbibed nondormant (after-ripened) seeds in the period before actual germination and are capable of synthesizing protein at a rate comparable to that of the nondormant seeds. An increase of protein synthesis is observed in nondormant seeds at the beginning ...
متن کاملContrasting germination responses to vegetative canopies experienced in pre- vs. post-dispersal environments.
BACKGROUND Seeds adjust their germination based on conditions experienced before and after dispersal. Post-dispersal cues are expected to be more accurate predictors of offspring environments, and thus offspring success, than pre-dispersal cues. Therefore, germination responses to conditions experienced during seed maturation may be expected to be superseded by responses to conditions experienc...
متن کامل